Free Version

Upgrade subject to access all content

Difficult

Odd and Even Functions: Sine and Cosine

ACTMAT-KJNWJN

If:

$$\sin {(A+B)} = \sin {A} \cos {B} + \cos {A} \sin { B } $$

...sine is an odd function $(\sin {(-x)} = -\sin {x})$ and cosine is an even function $(\cos {(-x)} = \cos {x})$, which of the following expressions is equivalent to $\sin {(A-B)}$?

A

$ {\sin { A } \cos { B } +\cos { A } \sin {B} }$

B

$ {-\sin { A } \cos { B } +\cos { A } \sin { B }} $

C

$ {-\sin { A } \cos { B } -\cos { A } \sin { B } } $

D

$ {\sin { A } \cos { B } -\cos { A } \sin { B } } $

E

$ {\cos { A } \cos { B } +\sin { A } \sin { B }} $