Upgrade subject to access all content

Let $f(x)=\lim \limits_{h \to 0} \frac{\ln (x+h)-\ln (x)}{h}$. What is $f'(a)$ for any fixed constant $a \gt 0$?

$\cfrac{1}{x}$

$e^a$

$e^x$

$\cfrac{1}{a}$