Upgrade subject to access all content

If $f(x)=e^{-3x+1}$, what does $f^{(n)} (x)$ equal?

$f^{(n)} (x) = -(3^n) \cdot e^{-3x+1} $

$f^{(n)} (x) = (-1)^n \cdot 3^n \cdot e^{-3x+1}$

$f^{(n)} (x)=(-1)^n \cdot 3e^{-3x+1}$

$f^{(n)} (x)=(-1)^{n+1} \cdot 3e^{-3x+1}$