Upgrade subject to access all content

Find one solution to the following indefinite integral:

$$\int\sin{x}\cos{x}dx $$

$F(x)=\cfrac { 1 }{ 2 } \sin ^{ 2 }{x}+5$

$F(x)=2\sin ^{ 2 }{x}-13$

$F(x)=\cfrac { 1 }{ 2 } \cos ^{ 2 }{x}-1$

$F(x)=- \sin ^{ 2 }{x}+5$