Upgrade subject to access all content

Given ${ a }_{ n }>0$ and ${ b }_{ n }>0$ for all values of $n$.

If $\sum { { a }_{ n } }$ converges and

$$\displaystyle\lim_{n \to \infty }\cfrac{a_{n}}{b_{n}}=3$$

...which of the following must be true?

$\sum { { b }_{ n } }$ converges

$\sum { { b }_{ n } }$ diverges

$\sum { { a }_{ n } } = \sum { { b }_{ n } } $

$\sum { { a }_{ n } } <\sum { { b }_{ n } } $