Upgrade subject to access all content

If the graph of $y=f(x)$ passes through the point $(-1, \, -2)$ and $\cfrac{dy}{dx} = \cfrac{7}{2y \cdot (x + 2)}$ for all $x \ge -1$, then $y(x)=$

$y = \pm \sqrt {7\ln \left| {x + 2} \right| + 4} $; $x \ge -1$

$y =-2 - \sqrt {7\ln \left| {x + 2} \right| } $; $x \ge -1$

$y =-2 \pm \sqrt {7\ln \left| {x + 2} \right| } $; $x \ge -1$

$y = - \sqrt {7\ln \left| {x + 2} \right| + 4} $; $x \ge -1$