Upgrade subject to access all content

Determine which expression represents the surface area of the solid formed by rotating the graph $y = x^2 + 2$ about the $x$-axis from $x = 0$ to $3$.

$2\pi \displaystyle\int _{ 0 }^{ 3 }{ x\sqrt { 1+{ 4 }x^{ 2 } } dx } $

$2\pi \displaystyle\int _{ 0 }^{ 3 }{ x\sqrt { 1+{ 2 }x } dx } $

$2\pi \displaystyle\int _{ 0 }^{ 3 }{ ( { x }^{ 2 }+2 ) \sqrt { 1+{ 4x }^{ 2 } } dx }$

$2\pi \displaystyle\int _{ 0 }^{ 3 }{ x\sqrt { 1+{ 4x }^{ 2 } } dx } $