Upgrade subject to access all content

Find the equation of the line tangent to the parametric curve $x( t ) =2t-1,\quad y( t ) ={ t }^{ 3 }-{ 3t }^{ 2 }+1$ at its point of inflection.

$y=-\cfrac{3}{2}x+\cfrac{5}{2}$

$y=-\cfrac{3}{2}x+\cfrac{1}{2}$

$y=-\cfrac{3}{2}x-\cfrac{1}{2}$

$y=\cfrac{3}{2}x-\cfrac{5}{2}$