?

General Chemistry

Free Version

Upgrade subject to access all content

Difficult

Mass Defect and Binding Energy of Nucleon

CHEM-QGHYKU

Calculate the mass defect, nuclear binding energy (in J), and the binding energy per nucleon of the $_{ 17 }^{ 35 }{ Cl }$.

Keep in mind the following equation and numbers:

  • $\Delta E={ (\Delta m)c }^{ 2 }$, where $(\Delta m)$ is difference in mass and $c$ is the velocity of light
  • $c$ = $ 3.00 \times { 10 }^{ 8 } { m/s } $
  • $1J=1 \ kg{ \ m }^{ 2 }/{ s }^{ 2 }$
  • The mass of a proton = 1.007825 amu (atomic mass units)
  • The mass of a neutron = 1.008665 amu (atomic mass units)
  • The mass of $(_{ 17 }^{ 35 }{ Cl })$ = 34.95952 amu (atomic mass units)
  • Avagadro's number = ${ 6.023 \times 10 }^{23}​ \ amu$
A

$-0.3295 \ amu, \ {- 2.97 }\times 10^{ 16 }J \ \text{ and} \ {- 8.48\times }10^{ 14 }J/\text{nucleon}$

B

$-0.3295 \ amu, \ { 2.97 }\times 10^{ 16 }J \ \text{ and} \ { 8.48\times }10^{ 14 }J/\text{nucleon}$

C

$-0.3295 \ amu, \ { 4.92 }\times 10^{ -8 }J \ \text{ and} \ { 1.41\times }10^{ -9 }J/\text{nucleon}$

D

$-0.3295 \ amu, \ { 4.92 }\times 10^{ -11 }J \ \text{ and} \ { 1.41\times }10^{ -12 }J/\text{nucleon}$