Linear Algebra

Free Version

Upgrade subject to access all content

Easy

Vector Normalization: Normalization in $R^3$

LINALG-XNI9YR

Compute the normalization of $\boldsymbol{v} = \begin{bmatrix} 1 \\\ 1 \\\ -2 \end{bmatrix}$.

Remember that the normalization of $\boldsymbol{v}$ is the unit vector pointing in the same direction as $\boldsymbol{v}$.

A

$\begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ -1 \end{bmatrix}$

B

$\begin{bmatrix} \frac{1}{4} \\\ \frac{1}{4} \\\ -\frac{1}{2} \end{bmatrix}$

C

$\begin{bmatrix} \frac{1}{\sqrt{6}} \\\ \frac{1}{\sqrt{6}} \\\ -\frac{2}{\sqrt{6}} \end{bmatrix}$

D

$\begin{bmatrix} \frac{1}{\sqrt{6}} \\\ \frac{1}{\sqrt{6}} \\\ \frac{2}{\sqrt{6}}\end{bmatrix}$

E

$\begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ 1 \end{bmatrix}$

F

$\begin{bmatrix} \frac{1}{4} \\\ \frac{1}{4} \\\ \frac{1}{2} \end{bmatrix}$