?

Multivariable Calculus

Free Version

Upgrade subject to access all content

Easy

Determine Parameterization of Sphere with Radius 3

MVCALC-ZXEJH8

Determine the parameterization of the sphere with radius 3 centered at $P = (1,0,2)$.

A

$\vec{G}(u,v) = ( 3\cos u \sin v, 3 \sin u \sin v, 3 \cos v)$ for $0 \leq u \leq 2\pi$ and $0 \leq v \leq \pi$

B

$\vec{G}(u,v) = ( 3 \cos u \sin v - 1, 3 \sin u \sin v, 3 \cos v - 2)$ for $0 \leq u \leq 2\pi$ and $0 \leq v \leq \pi$

C

$\vec{G}(u,v) = ( 3\cos u \sin v + 1, 3 \sin u \sin v, 3 \cos v + 2)$ for $0 \leq u \leq 2\pi$ and $0 \leq v \leq \pi$

D

$\vec{G}(u,v) = ( 3\cos u \sin v - 1, 3 \sin u \sin v, 3 \cos v - 2)$ for $0 \leq u \leq \pi$ and $0 \leq v \leq 2\pi$

E

None of the Above