?

Multivariable Calculus

Free Version

Upgrade subject to access all content

Easy

Determine the Curl of the Vector Field

MVCALC-AKO4VE

Determine the curl of the vector field $2\vec{F}+\vec{G}$, where:

$$\vec{F} = \langle xy\cos z, xy\sin z, ye^x \rangle$$
$$\vec{G} = \langle yz, xz, xy \rangle$$

A

$\langle e^x-xy\cos z, ye^x + xy\sin z, y\sin z - x\cos z \rangle$

B

$\langle e^x-xy\cos z, ye^x - xy\sin z, y\sin z - x\cos z \rangle$

C

$\langle 2e^x-2xy\cos z, -2ye^x + 2xy\sin z, 2y\sin z - 2x\cos z \rangle$

D

$\langle 2e^x-2xy\cos z + yz, xz - 2ye^x - 2xy\sin z, 2y\sin z - 2x\cos z + xy\rangle$

E

None of the Above