?

Multivariable Calculus

Free Version

Upgrade subject to access all content

Easy

Determine the Parameterization of Graph, Paraboloid Disk

MVCALC-61XALD

Determine the parameterization of the graph of $x^2+y^2 = z$ that lies over the disk $x^2 + y^2 \leq 1$ residing the plane.

A

$\vec{G}(u,v) = ( u \cos v, u \sin v, u^2 )$ for $0 \leq u \leq 1$ and $0 \leq v \leq 2\pi$

B

$\vec{G}(u,v) = ( v \cos u, v \sin u, v^2 )$ for $0 \leq u \leq 1$ and $0 \leq v \leq 2\pi$

C

$\vec{G}(u,v) = ( \cos v, \sin v, u^2 )$ for $0 \leq u \leq 1$ and $0 \leq v \leq 2\pi$

D

$\vec{G}(u,v) = ( \cos uv, u \sin uv, u^2 )$ for $0 \leq u \leq 1$ and $0 \leq v \leq 2\pi$

E

None of the Above