?

Multivariable Calculus

Free Version

Upgrade subject to access all content

Easy

Flux of Radial Vector Field

MVCALC-L0JYXX

Given a continuous vector field $\vec{F}$ over a region $R$, let $C$ be a smooth oriented curve in $R$. The outward $\textbf{flux}$ of $\vec{F}$ across $C$ is:

$$\int_C \vec{F}\cdot\vec{n} ds$$

...where $\vec{n}$ is the unit outward normal vector.

Let $C$ be the counterclockwise oriented unit circle on the plane and centered at the origin.

Find the flux of $\vec{F}=\langle x,y\rangle $ on $C$.

A

$0$

B

$2\pi$

C

$4\pi$

D

$-2\pi$

E

$-4\pi$