?

Multivariable Calculus

Free Version

Upgrade subject to access all content

Easy

Particular solution with Method of Undetermined Coefficients

MVCALC-WA9UEJ

Using the Method of Undetermined Coefficients, determine the particular solution to the differential equation:

$$y'' - y' - 6y = 4 \sin 2t$$

A

$y_p(t) = 4 t \sin 2t$

B

$y_p(t) = \frac{2\cos t}{15} - \frac{14\sin t}{15}$

C

$y_p(t) = \frac{2\cos 2t}{15} - \frac{14\sin2t}{15}$

D

$y_p(t) = \frac{\sin 2t}{13} - \frac{5\cos2t}{13}$

E

None of the Above