Upgrade subject to access all content

Find general solution of the differential equation:$$ \sin(x) y'+\cos(x) y=2 \sin^3(x) \cos(x)$$

$\left(\frac{\cos^3(x)}{2}+\dfrac{C}{\sin(x)}\right)$

$\left(\frac{\cos^3(x)}{2}+\dfrac{C}{\cos(x)}\right)$

$\left(\frac{\sin^3(x)}{2}+C \sec(x)\right)$

$\left(\frac{\sin^3(x)}{2}+C \csc(x)\right)$