?

Single Variable Calculus

Free Version

Upgrade subject to access all content

Difficult

Second Derivative with Quotient and Product Rule

SVCALC-KNQLUD

Find second derivative of the function $y=\cfrac{\sin(x^2)}{x^2-1}$.

A

$\cfrac{2x^3\cos(x^2)-2x\cos(x^2)+2x\sin(x^2)}{(x^2-1)^2}$

B

$\cfrac{(\cos(x^2)(10x^2-2)+\sin(x^2(-9x^4-4x^2-2))(x^2-1)-(\cos(x^2)(2x^2-2x)-\sin(x^2)2x)4x)}{(x^2-1)^3}$

C

$\cfrac{2x^3\cos(x^2)-2x\cos(x^2)-2x\sin(x^2)}{(x^2-1)^2}$

D

$\cfrac{(\cos(x^2)(10x^2-2)-\sin(x^2(-9x^4-4x^2-2))(x^2-1)-(\cos(x^2)(2x^2-2x)+\sin(x^2)2x)4x)}{(x^2-1)^3}$