?

Single Variable Calculus

Free Version

Upgrade subject to access all content

Difficult

Separable Differential Equation: General Solution

SVCALC-DHGU4A

Find general solution in implicit form of the following differential equation:

$$ x y' +y = y^2$$

A

$ \ln|y-1| - \ln|y| = \ln|x| +C$

B

$ \ln\left|\dfrac{1}{y^2-1}\right| = \ln|x| +C$

C

$ \ln(y-1) - \ln(y) = \ln(x) +C$

D

$ \ln\left|\dfrac{1}{y^2-1}\right| = \ln|x|$