Upgrade subject to access all content

$X, \leq$ is a partially ordered set, $T=\{U\subset X:\forall x\in U, y\in X, x < y\implies y\in U\}$.

Which of the following statements are TRUE?

Select ALL that apply.

$\forall S\subset T$, $\cap_{V\in S} V\in T$.

$\forall S\subset T$, $\cup_{V\in S} V\in T$.

$\subseteq$ is a linear order on $T$.

$\forall S\subset T$, there is a infimum of $S$ under $\subseteq$.

$\forall S\subset T$, $S$ has a least element under $\subseteq$.