Limited access

Upgrade to access all content for this subject

Let $D_3$ be the dihedral group with six elements, and with neutral element $e$.

It has presentation: $D_3=\langle a,b\mid a^3=b^2=e, aba=b^{-1}\rangle$.

For any $g\in D_3$, let $\operatorname{C}_g$ be the conjugacy class of $g$ in $D_3$.

The group $D_3$ is the disjoint union of
Select Option $\operatorname{C}_a$ and $\operatorname{C}_b$$\operatorname{C}_e$, $\operatorname{C}_a$ and $\operatorname{C}_{a^2}$$\operatorname{C}_e$, $\operatorname{C}_a$ and $\operatorname{C}_{ab}$$\operatorname{C}_e$, $\operatorname{C}_a$, $\operatorname{C}_{a^2}$, $\operatorname{C}_{b}$, $\operatorname{C}_{ab}$ and $\operatorname{C}_{a^2b}$
. One way to write the Class Equation for $D_3$ is
Select Option $|D_3|=|\operatorname{C}_e|+|\operatorname{C}_a|$ $+ |\operatorname{C}_b|$$|D_3|=\sum_{g\in D_3}|\operatorname{C}_g|$$|D_3|=|\operatorname{C}_e|+|\operatorname{C}_a|+|\operatorname{C}_{a^2}|$
Select an assignment template