Upgrade to access all content for this subject

Which of the following statements are FALSE? Select ALL that apply.

Given any commutative ring $R$ and an ideal $I$ of $R$, $I$ can be made a module over $R$.

$\mathbb{R}$ is a module over $\mathbb{Z}$

$\mathbb{Z}$ is a module over $\mathbb{Q}$

$\mathbb{Z}_6$ is a module over $\mathbb{Z}_8$

$\mathbb{Z}_n$ is a module over $\mathbb{Z}_{2n}$ for every integer $n\geq 2$.