Limited access

Upgrade to access all content for this subject

Let $\mathbf{F}_7$ be a finite field with $7$ elements and let $\mathbf{F}_7^\ast$ be the non-zero elements of $\mathbf{F}_7$.
Let $+$ be addition and let $\times$ be multiplication in $\mathbf{F}_7$.
It is known that both $(\mathbf{F}_7, +)$ and $(\mathbf{F}_7^\ast, \times)$ are cyclic groups.

(1) There are
Select Option 6321
distinct elements $g\in\mathbf{F}_7$ such that $g$ generates $(\mathbf{F}_7, +)$. (2) There are
Select Option 6321
distinct elements $g\in\mathbf{F}_7^\ast$ such that $g$ generates $(\mathbf{F}_7^\ast, \times)$.
Select an assignment template