Limited access

Upgrade to access all content for this subject

List Settings
Sort By
Difficulty Filters
Page NaN of 1946

Let $\mathbb{Z}$ be the ring of integers.

For a complex number $\alpha$ that satisfies a polynomial of degree $2$ in $\mathbb{Z}[x]$, let $R_\alpha$ be the ring:

$$\mathbb{Z}[\alpha]:=\mathbb{Z}+\mathbb{Z}\alpha=\{m+n\alpha\mid m, n\in\mathbb{Z}\}.$$

1) In the ring $\mathbb{Z}$, the integer $2$ is
Select Option primeirreducible but not primenot irreducible
. 2) In the ring $\mathbb{Z}[\sqrt{-1}]$, the integer $2$ is
Select Option primeirreducible but not primenot irreducible
. 3) In the ring $\mathbb{Z}\left[\cfrac{-1+\sqrt{-3}}{2}\right]$, the integer $2$ is
Select Option primeirreducible but not primenot irreducible
.
(You may use the fact that this ring is a Unique Factorization Domain (UFD).) 4) In the ring $\mathbb{Z}[\sqrt{-5}]$, the integer $2$ is
Select Option irreducible and primeirreducible but not primenot irreducible
.
Accuracy 0%
Select an assignment template