Limited access

Let $S_4$ be the symmetric group on $4$ symbols, and let $e$ be the neutral (identity) element of $S_4$.

Let $A_4$ denote the alternating on $4$ symbols, $V_4$ the Klein $4$-group, and $D_4$ the dihedral group with $|D_4|=8$).

We say two subgroups of $S_4$ are equal if and only if they are isomorphic to each other.

For a subset $T\subseteq S_4$, let $\langle T\rangle$ denote the subgroup of $S_4$ generated by $T$.

To ease notation, we often omit the set brackets in the description of $T$.

For $\sigma$ in $S_4$, let $\sigma T\sigma^{-1}=\{\sigma t \sigma^{-1}\mid t\in T\}$.

1) $\langle (12)(34)\rangle$ equals
Select Option $\{e, (12)(34)\}$$A_4 . 2) \langle (12)\rangle equals Select Option \{e,(12)\}$$S_4$
. 3) The set $\bigcup_{\sigma\in S_4}\sigma\{e,(12)(34)\}\sigma^{-1}$ equals
Select Option $V_4$$A_4 , which is Select Option a normal subgroup a subgroup which is not normalnot a subgroup in S_4. 4) The set \bigcup_{\sigma\in S_4}\sigma\{e,(12)\}\sigma^{-1} equals Select Option \{all transpositions,e\}$$S_4$
, which is
Select Option a normal subgroupa subgroup which is not normalnot a subgroup
in $S_4$. 5) The set $\bigcap_{\sigma\in S_4}\sigma\langle (12), (12)(34)\rangle\sigma^{-1}$ equals
Select Option $S_4$$D_4$$V_4$$\{e\} . 6) The set \bigcap_{\sigma\in S_4}\sigma \langle (1234),(13) \rangle\sigma^{-1} equals Select Option S_4$$D_4$$V_4$$\{e\}$
.
Select an assignment template