Limited access

Upgrade to access all content for this subject

Which of the following equations represents the following scenario, if $k$ is a "constant of proportionality"?

$m$ varies directly as the sum of $n$ and $ { p }^{ 2 } $, and inversely as the product of $q$ and $ \sqrt { s }.$

A

$ m=\cfrac { n{ +p }^{ 2 } }{ kq\sqrt { s } } $

B

$ m=\cfrac { kq\sqrt { s } }{ n{ +p }^{ 2 } } $

C

$ m=k(n{ +p }^{ 2 })q\sqrt { s } $

D

$ m=\cfrac { k(n{ +p }^{ 2 }) }{ q\sqrt { s } } $

E

$ m=\cfrac { (n{ +p }^{ 2 })q\sqrt { s } }{ k } $

Select an assignment template