Limited access

Upgrade to access all content for this subject

Evaluate the integral in cylindrical coordinates:

$$I=\int_{-1}^1 \int_0^4 \int_0^{\sqrt{1-y^2}} \frac{1}{(1+x^2+y^2)^2} dxdzdy$$

A

$\pi$

B

$1$

C

$2$

D

$\cfrac{\sqrt{5}}{3}$

E

$\cfrac{\sqrt{2}\pi}{2}$

Select an assignment template