Limited access

Upgrade to access all content for this subject

List Settings
Sort By
Difficulty Filters
Page NaN of 1947

For real $x$ and $y$ such that $(x,y)\ne (0,0)$ let:


Can $f(0,0)$ be defined in such a way as to make $f$ continuous at the origin $(0,0)$?


No. The function does not have a removable discontinuity at the origin because $$\lim_{(x,y)\to(0,0)} f(x,y)$$ does not exist.


Yes. Define $f(0,0)=0$.


Yes. Define $f(0,0)=1$.

Accuracy 0%
Select an assignment template