Upgrade to access all content for this subject

Using the Method of Undetermined Coefficients, determine the particular solution to the differential equation:

$$y'' - y' - 6y = 4 \sin 2t$$

$y_p(t) = 4 t \sin 2t$

$y_p(t) = \frac{2\cos t}{15} - \frac{14\sin t}{15}$

$y_p(t) = \frac{2\cos 2t}{15} - \frac{14\sin2t}{15}$

$y_p(t) = \frac{\sin 2t}{13} - \frac{5\cos2t}{13}$

None of the Above