Limited access

Upgrade to access all content for this subject

Given the Schrödinger equation:

$$-\frac { { \hbar }^{ 2 } }{ 2m } \frac { { d }^{ 2 } }{ { dx }^{ 2 } } \Psi +V(x)\Psi =E\Psi $$

If $\Psi =\sin\left( \cfrac { 2\pi x }{ \lambda } \right) $, and there is no potential energy, what is the value of the kinetic energy?

A

$\cfrac { 4{ h }^{ 2 }{ \pi }^{ 2 } }{ 2m{ \lambda }^{ 2 } } $

B

$-\cfrac { 4{ h }^{ 2 }{ \pi }^{ 2 } }{ 2m{ \lambda }^{ 2 } } $

C

$-\cfrac { { h }^{ 2 } }{ 2m{ \lambda }^{ 2 } } $

D

$\cfrac { { h }^{ 2 } }{ 2m{ \lambda }^{ 2 } } $

E

$\cfrac { h }{ \lambda } $

Select an assignment template