Limited access

Upgrade to access all content for this subject

Find the quotient in trigonometric form, and state your answer such that $0\le\theta\le2\pi$:

$$\cfrac { 2-2i\sqrt { 3 } }{ 3-i\sqrt { 3 } }$$

A

$\cfrac { 2\sqrt { 3 } }{ 3 } \left\{ \cos { \left( \cfrac { 5\pi }{ 6 } \right) } +i\sin { \left( \cfrac { 5\pi }{ 6 } \right) } \right\}$

B

$ \cfrac { 2\sqrt { 3 } }{ 3 } \left\{ \cos { \left( \cfrac { 7\pi }{ 2 } \right) } +i\sin { \left( \cfrac { 7\pi }{ 2 } \right) } \right\}$

C

$ \cfrac { 2\sqrt { 3 } }{ 3 } \left\{ \cos { \left( \cfrac { 3\pi }{ 2 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 2 } \right) } \right\}$

D

$ \cfrac { 2\sqrt { 3 } }{ 3 } \left\{ \sin { \left( \cfrac { 5\pi }{ 6 } \right) } +i\cos { \left( \cfrac { 5\pi }{ 6 } \right) } \right\}$

Select an assignment template