Limited access

Given,
$${ z }_{ 1 }=3\sqrt { 2 } \left\{ \cos { \left( \cfrac { \pi }{ 6 } \right) } +i\sin { \left( \cfrac { \pi }{ 6 } \right) } \right\}$$
$${ z }_{ 2 }=\cfrac { \sqrt { 2 } }{ 2 } \left\{ \cos { \left( \cfrac { 3\pi }{ 4 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 4 } \right) } \right\}$$
...what would be the results of the following expression?
$$\cfrac { { \left( { z }_{ 1 } \right) }^{ 4 } }{ { z }_{ 2 } }$$
Use the restriction, $0\le \theta \le 2\pi$.

A

$24 \left\{ \cos { \left( \cfrac { 23\pi }{ 12 } \right) } +i\sin { \left( \cfrac { 23\pi }{ 12 } \right) } \right\}$

B

$324\sqrt { 2 } \left\{ \cos { \left( -\cfrac { \pi }{ 12 } \right) } +i\sin { \left( -\cfrac { \pi }{ 12 } \right) } \right\}$

C

$324\sqrt { 2 } \left\{ \cos { \left( \cfrac { 23\pi }{ 12 } \right) } +i\sin { \left( \cfrac { 23\pi }{ 12 } \right) } \right\}$

D

$24\left\{ \cos { \left( -\cfrac { \pi }{ 12 } \right) } +i\sin { \left( -\cfrac { \pi }{ 12 } \right) } \right\}$

Select an assignment template