Limited access

Upgrade to access all content for this subject

Given,
$${ z }_{ 1 }=4\left\{ \cos { \left( \cfrac { 3\pi }{ 4 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 4 } \right) } \right\} $$
$${ z }_{ 2 }=\sqrt { 2 } \left\{ \cos { \left( \cfrac { \pi }{ 2 } \right) } +i\sin { \left( \cfrac { \pi }{ 2 } \right) } \right\} $$
$${ z }_{ 3 }=\cfrac { 3\sqrt { 2 } }{ 2 } \left\{ \cos { \left( \cfrac { \pi }{ 4 } \right) } +i\sin { \left( \cfrac { \pi }{ 4 } \right) } \right\} $$
What would be the result of the following expression?
$$\cfrac { { z }_{ 1 }\times { z }_{ 2 } }{ { z }_{ 3 } } $$

A

$\cfrac { 8 }{ 3 } \left\{ \cos { \left( \pi \right) } +i\sin { \left( \pi \right) } \right\}$

B

$\cfrac { 8 }{ 3 } \left\{ \cos { \left( \cfrac { 3\pi }{ 2 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 2 } \right) } \right\} $

C

$12 \left\{ \cos { \left( \pi \right) } +i\sin { \left( \pi \right) } \right\}$

D

$12 \left\{ \cos { \left( \cfrac { 3\pi }{ 2 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 2 } \right) } \right\} $

Select an assignment template