Limited access

Given,
$${ z }_{ 1 }=6\sqrt { 3 } \left\{ \cos { \left( \cfrac { 11\pi }{ 12 } \right) } +i\sin { \left( \cfrac { 11\pi }{ 12 } \right) } \right\}$$
$${ z }_{ 2 }=\cfrac { 3\sqrt { 3 } }{ 2 } \left\{ \cos { \left( \cfrac { \pi }{ 6 } \right) } +i\sin { \left( \cfrac { \pi }{ 6 } \right) } \right\}$$
$${ z }_{ 3 }=\sqrt { 2 } \left\{ \cos { \left( \cfrac { 5\pi }{ 4 } \right) } +i\sin { \left( \cfrac { 5\pi }{ 4 } \right) } \right\}$$
What would be the results of the following expression?
$$\cfrac { { z }_{ 1 } }{ { { z }_{ 2 }\times z }_{ 3 } }$$
Use the restriction, $0\le \theta \le 2\pi$

A

$2\sqrt { 2 } \left\{ \cos { \left( \cfrac { \pi }{ 3 } \right) } +i\sin { \left( \cfrac { \pi }{ 3 } \right) } \right\}$

B

$2\sqrt { 2 } \left\{ \cos { \left( \cfrac { 3\pi }{ 2 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 2 } \right) } \right\}$

C

$27\sqrt { 2 } \left\{ \cos { \left( \cfrac { 3\pi }{ 2 } \right) } +i\sin { \left( \cfrac { 3\pi }{ 2 } \right) } \right\}$

D

$27\sqrt { 2 } \left\{ \cos { \left( \cfrac { \pi }{ 3 } \right) } +i\sin { \left( \cfrac { \pi }{ 3 } \right) } \right\}$

Select an assignment template